1 of 42

Windows Development Library (WDL)

Dialog/Control Reference Guide

General Information

WDL “USE” Files

These files are to be used by any program that wishes to perform any Windows API (Application Program Interface) function call. Take note that those “USE” files described as containing declarative information must be “USE’d” at or near the beginning of your program before any executable statements. All others should be “USE’d” some place after the first executable statements, typically after the last statement in your program. Although there are many other USE files contained in the WDL, for the purposes of this document and unless otherwise stated, WDL implies the following three files:

#COSWIN
Driver Library. This file contains MTB functions and support code necessary to perform various Windows functions. This module actually serves two purposes: The first is to translate and package MTB data into a form that is more compatible with the COSW API, sending the data to the appropriate support function in COSW. The second is to provide a simple mechanism for invoking high level features like Modal and Modeless dialogs, Menus, and Window Controls without the user having to juggle the myriad of messages flying around the Windows environment.

#COSWIND
Contains declaratives for constants, variables and formats that are used by the code contained in #COSWIN.

#WINDOWS
Contains most of the constants required to perform various functions using the Windows API. The constants have been derived from the C/C++ include file “windows.h” which is supplied as part of the C/C++ development platform.

Symbolic Constant Names

Many of the symbols used to describe constants in windows.h contain one or more embedded underscore characters “_” so that the function purpose stands out. In an MTB program, the underscore character is reserved as a line continuation character, and therefore, cannot be used as previously described. Instead, we have chosen to use the decimal point character “.” as a direct replacement. The results of this substitution is that with few exceptions, for any Windows symbolic constant you see referenced in the windows.h file, you can expect to find the same constant in the #windows file.

For example:

The windows.h constant BN_CLICKED (a button control was pressed), would become BN.CLICKED in #windows.

Feature Controls

Because the WDL API must contain code for all types of Windows functions whether or not they are used in a program, it became necessary to find a way to limit the inclusion of this unneeded source code from user programs. This has been accomplished through the use of conditional compilation, a technique that enables blocks of source code to be conditionally included or excluded during a compile by way of testing symbolic constants. These constants, as used by #coswin, are refered to as feature controls.

The following feature control constants can be used to enable or disable pre-defined sections of #coswin code. The section granularity is somewhat arbitrary and may require adjustment. If program size becomes a problem then it may become necessary to modify the driver code or to create a separate library of functions specific to an application. A word of CAUTION: As new compiler and system features become available, further changes will be made to the driver library rendering custom libraries incompatible or in need of merging.

CF.PICFRAME.CODE
Enables .BMP Picture Control functions

CF.PICBUTTON.CODE
Enables Picture Pushbutton Control functions

CF.LISTBOX.CODE
Enables ListBox Control functions

CF.COMBOBOX.CODE
Enables ComboBox Control functions

CF.MODELESS.CODE
Enables Modeless Dialog functions

CF.MODAL.CODE

Enables Modal Dialog functions

CF.METAFILE

Enables Meta-File functions

TRACE.CALLS
Enables tracing of all calls to #coswin (required for any tracing)

TRACE.LPARAM
Enables the inclusion of lParam data (up to 254 bytes) during tracing

TRACE.SEND

Enables tracing of data sent to COSW

TRACE.RECEIVE

Enables tracing of data received from COSW

TRACE.LUN

Specifies the lun to use for tracing

TRACE.DEVICE$

Specifies the trace file/device

Callback Control

To simplify the use of dialogs and controls in an MTB program, we have defined a set of functions that can be included in the user’s code. These functions will be called as needed by the driver library. Calls to these functions in the user program are enabled by defining constants on an as-needed basis as follows:

CF.USR.IDLE

Enables USR.Idle callback

CF.USR.COMMANDHANDLER
Enables USR.CommandHandler callback

CF.USR.COMMANDFILTERINIT
Enables USR.CommandFilterInit callback

CF.USR.MESSAGEHANDLER
Enables USR.MessageHandler callback

CF.USR.MESSAGEFILTERINIT
Enables USR.MessageFilterInit callback

CF.USR.ERRORHANDLER
Enables USR.ErrorHandler callback

CF.USR.DIALOGINIT

Enables USR.DialogInit callback

User Supplied Functions (CallBacks)

The following callback functions are used by the driver library to inform the application of an event occurrence or to retrieve initialization information from the application. Each function must be enabled by setting the appropriate constant as outlined in the “Callback Control” section of this document.

USR.MessageFilterInit:
Gets WM message filter information

USR.MessageHandler:
Handles WM messages

USR.CommandFilterInit:
Gets WM.COMMAND filter information

USR.CommandHandler:
Handles WM.COMMAND messages

USR.DialogInit:

Called when a dialog has been constructed

USR.Idle:
Called during idle time from Modal dialog or Modal loop

USR.ErrorHandler:

Called when a system error occurs

Driver Library Functions – Quick Reference

The following functions are supplied by the driver library. Most of the functions contained herein are the MTB equivalent of a similar Windows API. While not all API’s have been provided, we have selected those that are most appropriate for use in a MTB application. It should also be noted that many of the dialog and window functions are nothing more than predefined routines that use the SendMessage function to send a command to a window or control. There is no reason why a MTB programmer, who finds missing a function he or she requires, cannot write their own function following the style used in #coswin. If people would let us know of any functions that they would like to see included in the library, we will gladly consider them for some future release.

Driver Library State Control Functions

COS.Init

Initializes WDL

COS.PushState

Stacks the current state of the Driver library

COS.PopState

Restores the state of the Driver library

COS.DestroyAll
Destroys all dialogs and controls maintaind owned by the Driver Library

Menu Context Functions (Super Nova)

COS.LoadMenuContext
Loads a specified menu context onto the frame window (menu/toolbar/accelerators)

COS.LoadMenuContextEx
Same as above but with more parameters

Dynamic Link Library Functions

COS.OpenDll

Opens an application specified DLL

COS.CloseDll

Closes the currently open DLL

Primary Dialog Control Functions

COS.DoModal

Creates and executes a modal dialog

COS.EndDialog

Terminates a modal dialog

COS.AttachDialog

Attaches WDL to an existing dialog

COS.CreateModeless
Creates a modeless dialog

COS.DestroyDialog

Terminates a modeless dialog

Secondary Dialog Control Functions

COS.FindDialog

Find a dialog with a specified ID

COS.ModalLoop

Executes a modal loop

COS.ExitModalLoop
Terminates a modal loop

COS.EnableInterrupts
Allows messages to be received from Windows

COS.DisableInterrupts
Disables Windows messages

COS.FlushQueue

Clear all messages pending in the msg. queue

COS.InitCmdFilter

Initializes a WM.COMMAND filter

COS.AppendCmdFilter
Adds entries to a WM.COMMAND filter

COS.InitMsgFilter

Initializes a WM. Message filter

COS.AppendMsgFilter
Adds entries to a WM. Message filter

COS.DialogHasFocus
Determines if any control contained in a specified dialog has the focus.

COS.SetWindowPos
Moves a dialog to a window quadrant or center

NOTE: This function has a windows counterpart, but due to an error, the functionality is different. For the functionality of the windows SetWindowPos function use COS.SetWIndowPosEx instead.

Dialog Functions – These functions, most of which take a control id as an argument, assume the dialog handle is contained in the MTB variable cosDlghDlg$.

General Dialog Functions

COS.GetDlgItemText
Retrieves text contained in specified control

COS.SetDlgItemText
Sets the text in a specified control

COS.SetDlgItemFocus
Sets the input focus to the specified control

COS.EnableDlgItem
Enables/disables a dialog control

COS.GetDlgItem

Retrieves the handle of a dialog control

COS.ShowDlgItem

Specifies how a dialog control is to be shown

COS.GetDlgItemTextLength Returns the length of a dialog control’s text

COS.DlgMessageBox
Displays a message box with a dialog parent

Button Related Dialog Functions

COS.CheckDlgButton
Sets the state of a specified button control

COS.IsDlgButtonChecked
Gets the state of a specified button control

COS.CheckRadioBtn
Checks one of a group of radiobuttons

COS.GetCheckedRadioBtn Returns the currently checked radiobutton

COS.LoadButtonPic
Loads a bitmap pushbutton with custom pictures from a resource file.

COS.AutoLoadButtonPic
Loads a bitmap pushbutton with pictures from a resource file.

Edit Control Related Dialog Functions

COS.EditLimitText

Limits the number of chars. in a edit control

COS.EditSetSel

Sets the positions of an edit control selector

COS.EditReplaceSel
Replaces selected text with specified text

Combo Box Related Dialog Functions

COS.ComboShowDropdown Open/Close dropdown combobox control

COS.ComboLimitText
Set the max. no. of chars. In the edit control

COS.ComboAddString
Adds a string to a combobox control

COS.ComboAddStringData Same as above but include 32 bits of data

COS.ComboSetCurSel
Sets the index of the currently selected item

COS.ComboGetCurSel
Returns the index of the currently selected item

COS.ComboSetEditSel
Set the range of selected text In the edit control

COS.ComboResetContent
Clears the contents of the combo control

COS.ComboSetItemData
Adds 32 bits of data to a combo control item

COS.ComboGetItemData
Retrieves the stored 32 bits of item data

List Box Related Dialog Functions

COS.ListAddString

Adds a string to a listbox control

COS.ListAddStringData
Same as above but include 32 bits of data

COS.ListSetCurSel

Selects the current item in a listbox

COS.ListSetSel

Selects an item in a multiple-select listbox

COS.ListGetCurSel

Returns the index of the currently selected item

COS.ListSetItemData
Adds 32 bits of data to a list control item

COS.ListGetItemData
Retrieves the stored 32 bits of item data

COS.ListSetTabStops
Set the tab stops for a listbox

COS.ListGetCount

Returns the number of items in a listbox

COS.ListGetSelCount
Returns the number of items select in a multi-select listbox

COS.ListGetSelItems
Returns a list of selected items in a multi-select listbox

Static Control Related Dialog Functions

COS.LoadPictureControl
Loads a .BMP file into a picture frame control

COS.LoadPictureControlEx Same as above but uses DOS filename

Windows Functions Specific to Comet

COS.GetFrameWnd
Returns a handle to the frame window

COS.GetViewWnd

Returns a handle to the view window

COS.GetAppWin

Same as COS.GetViewWnd

COS.SizeViewToWindow
Resizes the view/frame windows to fit a specified window

COS.SizeViewToDialog
Resizes the view/frame windows to fit a currently active dialog

COS.SetViewSize
Sets the size of the view/frame windows.

COS.SetCaption
Sets the caption on the Frame Window title bar

COS.SetStatusMessage
Displays a status message on the bottom status bar.

COS.MapCoswRect

Converts rectangle from COSW units to pixels

COS.GetCoswBaseUnits
Returns the factor by which COSW units are measured.

COS.CreateStatic

Creates a “static” control in a window

COS.CreateEdit

Creates a “edit” control in a window

COS.CreateListBox

Creates a “listbox” control in a window

COS.CreateComboBox
Creates a “combobox” control in a window

COS.CreateButton

Creates a “button” control in a window

COS.CreateControl

Creates a pre-defined control in a window

COS.DestroyControl
Destroys the specified Window control

COS.DestroyAllControls
Destroys all Window controls

Generic Windows Functions

COS.SetWindowText
Sets the text contained in a specified window

COS.GetWindowText
Gets the text contained in a specified window

COS.GetWindowTextLength Returns length of text in a specified window

COS.GetTextExtent

Returns the width & height of specified text

COS.SendMessage

Sends a message to a specified window

COS.PostMessage

Posts a message to a specified window

COS.ShowWindow

Specifies how a window is to be shown

COS.EnableWindow
Enables/disables a window

COS.IsWindowEnabled
Determines if a window is enabled/disabled

COS.SetFocus

Moves the input focus to the specified window

COS.GetFocus

Gets the handle of the window with the focus

COS.GetParent

Gets the handle of a window’s parent

COS.InvalidateWindow
Invalidates a specified rectangle of a window

COS.GetDialogBaseUnits
Returns the factor by which dialog control units are measured.

COS.MapDialogRect
Converts rectangle from dialog units to pixels

COS.ClientToScreen
Converts a point from client coordinates to screen coordinates.

COS.GetWindowRect
Returns the rectangle defining a window in screen coordinates

COS.GetClientRect
Returns the rectangle defining a window in client coordinates.

COS.SetWindowPosEx
Moves, sizes and changes z-order of specified the window

COS.MoveWindow
Moves and sizes a window to the specified screen coordinates

COS.MessageBox
Displays a message box with a specified parent

Driver Library Functions – Detailed Reference

Driver Library State Control Functions

COS.Init - Initializes variables used by the Driver Library.

This function MUST be called before attempting to use any Driver Library functions.

On Entry:

On Exit:
<cosError> is equal to:

NOERROR if initialization is successful

WRONGVERSION if the call is made from a non-windows session.

COS.PushState – Saves the current state the Driver library

This function should be called before initializing and executing a recursed dialog and also before executing any other modal procedure. Basically - this code saves off information about the current dialog so it can be restored after a subsequent dialog is terminated.

On Entry:

On Exit:

COS.PopState - Restores the state of the Driver library

This function is called after terminating a dialog or other dialog-like features, restoring previously saved information (see COS.PushState) about the last dialog executed.

On Entry:

On Exit:

COS.DestroyAll - Destroys all dialogs and maintained by the Driver Library

This function should be called at the end of a program to ensure that all dialogs have been removed.

On Entry:

On Exit:

Menu Context Functions (Super Nova)

COS.LoadMenuContext and

COS.LoadMenuContextEx - Loads a specified menu context onto the frame window (menu/toolbar/accelerators)

On Entry:
<cosFileNames$> contains the name of the tool context file to be loaded (COS.LoadMenuContext).

<cosDirName$> contains the COMET directory (COS.LoadMenuContext)

<cosFileSpec$> contains the full qualified DOS file name of the tool context file to be loaded (COS.LoadMenuContextEx).

 <cosDlgFlags> specifies options (not at this time)

On Exit:
<cosFuncResult> TRUE if successful or FALSE if the function fails

Dynamic Link Library Functions

COS.OpenDll and

COS.OpenDllEx - Opens a DLL that contains the resources that will be used by this application

On Entry:
<cosDllNames$> contains the name of the DLL file to be opened (COS.OpenDll)

<cosDllDir$> contains the COMET directory (COS.OpenDll)

<cosFileSpec$> contains the full qualified DOS file name of the DLL (COS.OpenDllEx)

On Exit:
<cosDllOpen> will be TRUE (1) if the DLL was successfully opened or FALSE (0) if there was an error.

The reason for a DLL open error can be determined by comparing the value of cosID.wParam$ with error codes contained in C/C++ help files (see LoadLibrary).

COS.CloseDll - Closes the currently open DLL

On Entry:

On Exit:
<cosDllOpen> will be FALSE (0) if the DLL was successfully closed.

Primary Dialog Control Functions

COS.DoModal - Retrieves and executes a modal dialog from the currently opened DLL.

This function is called to display and execute a MODAL dialog. That is, a dialog that once called, disables all other parent windows belonging to the same program, only returning after the dialog has been closed by the user or a program function. This is the most common kind of dialog that you will find used by Windows programs. Examples of where modal dialogs might be used are; selection (font/printer), file maintenance, and setting’s dialogs.

On Entry:
<cosDlgId> contains the resource identifier for the dialog that is to be displayed. The resource identifier is the ID that was assigned (or selected) when the dialog was first created in the Visual Studio. The value of the ID can be found by opening the file resource.h in the DLL project directory and locating the symbolic name for the dialog (usually IDD_SOMETHING). There you will find, adjacent to the symbol, a value than can be use directly or in a constant (recommended) in your program.

On Exit:
<cosError>
NOERROR if successful

NODIALOG if the function failed

COS.EndDialog - Terminates a modal dialog

This function is called from within a command message handler. Once this function is called, the program must return to the calling functions before the dialog will actually be closed down.

On Entry:
<cosCtlID> contains the dialog result value. That is, the value that will be returned in <cosDlgResult> upon returning from the COS.DoModal function. Typical values would be IDOK or IDCANCEL: the standard returns values from the “OK” and “CANCEL” pushbuttons.

On Exit:

COS.AttachDialog - Attaches the Driver Library to an existing dialog

This function is used when returning to a program that wishes to regain control of an existing dialog. This is necessary when overlaying another program because the Driver Library and all of its data is destroyed. It is recommended that overlays NOT be used during the operation of a dialog. In their place you can use the ENTER feature which preserves all Driver Library data. This function can also be used from within a ENTER’d program to gain control of an existing dialog. An important note: remember, you must always call COS.Init before any other functions.

On Entry:
<cosCWnd$> contains a handle to an existing dialog

On Exit:

COS.CreateModeless - Creates a modeless dialog

This function is called to display a MODELESS dialog. Unlike a modal dialog, a modeless does not prevent the use of other application windows. Once created, it is up to the program to insure that messages are received by making repeated calls to the Driver Library. This is a very advanced function. Information on the details of implementing a modeless dialog will be provided on a later date.

On Entry:
<cosDlgId> contains the resource identifier for the dialog that is to be displayed. The resource identifier is the ID that was assigned (or selected) when the dialog was first created in the Visual Studio. The value of the ID can be found by opening the file resource.h in the DLL project directory and locating the symbolic name for the dialog (usually IDD_SOMETHING). There you will find, adjacent to the symbol, a value than can be use directly or in a constant (recommended) in your program.

On Exit:
<cosDlgOpen>
is TRUE if successful

cosError = NOERROR

FALSE if the function failed

cosError = NODIALOG

COS.DestroyDialog -Terminates a modeless dialog

On Entry:

On Exit:

Secondary Dialog Control Functions

COS.FindDialog - Find a dialog with a specified ID

This function searches through a list of dialogs that have already been created for a session, to find the dialog that is assigned a special user ID. This function can be useful when entering or returning from an overlay or just running a new program that expects to find such a dialog. The user ID is assigned at the time the dialog is executed (COS.DoModal or COS.CreateDialog). An example of a use for this function can be found in the demo program “image” (source #image) contained in the DLG demonstration directory.

On Entry:
<cosCtlId>

Contains the user ID

On Exit:
<cosCWnd$>
Contains a handle to the found dialog

Null$ (“”) if no such dialog was found

COS.ModalLoop - Executes a modal loop

This function is called to enter a MODAL loop. Once called, control will not return to the calling program until signaled to do so (see COS.ExitModalLoop) from within a message handler. This function is most often used when Windows controls have been added to the QCRT window, a feature that is demonstrated in the MTB demo program “direct” (source #direct) contained in the DLG demonstration directory.

On Entry:

On Exit:

COS.ExitModalLoop - Terminates a modal loop

This function is called from within a command message handler to signal that a modal loop (see COS.ModalLoop) is to be terminated. After calling COS.ExitModalLoop, the message handler must return to its calling function before the function will have an affect.

On Entry:

On Exit:

COS.EnableInterrupts - Allows messages to be received from Windows

This feature enables the Driver Library to continue receiving messages from a dialog or other window while inside an MTB INPUT statement. This function essentially allows a program to have the best of both worlds, that is, Windows controls overlaying a QCRT screen.

On Entry:

On Exit:

COS.DisableInterrupts - Disables Windows messages

This feature is called after returning from an MTB INPUT statement to prevent Windows messages from being received by the Driver Library.

On Entry:

On Exit:

COS.FlushQueue - Clear all messages pending in the msg. queue

Call this function to remove any un-serviced d messages that may have been left in the Driver Library message queue. This function is useful following errors that may prevent some functions from retrieving Windows messages.

On Entry:

On Exit:

COS.InitCmdFilter - Initializes a WM.COMMAND filter

This function initializes a table of up to 63 control id’s and control notifications that are used to filter command (WM_COMMAND) messages generated by a window, dialog, or control. In order for a program to receive any command message, it MUST have a corresponding entry in this table.

On Entry:
<cosCtlText$>
Contains a list of 4 byte entries as follows:

2 byte packed control ID

2 byte packed message

On Exit:

COS.AppendCmdFilter - Adds entries to a WM.COMMAND filter

This function allows additional entries to be made to the command message filter as described by COS.InitCmdFilter. Up to 63 entries can be made in a single call.

On Entry:
<cosCtlText$>
Contains a list of 4 byte entries as follows:

2 byte packed control ID

2 byte packed message

On Exit:

COS.InitMsgFilter - Initializes a WM. Message filter

This function initializes a table of up to 42 control id’s and control notifications that are used to filter window messages (WM_MESSAGE) generated by a window, dialog, or control. In order for a program to receive any window message (WM_MESSAGE), it MUST have a corresponding entry in this table.

On Entry:
<cosCtlText$>
Contains a list of 6 byte entries as follows:

4 byte window handle

2 byte packed message

On Exit:

COS.AppendMsgFilter - Adds entries to a WM. Message filter

This function allows additional entries to be made to the command message filter as described by COS.InitMsgFilter. Up to 42 entries can be made in a single call.

On Entry:
<cosCtlText$>
Contains a list of 6 byte entries as follows:

4 byte window handle

2 byte packed message

On Exit:

COS.DialogHasFocus - Determines if any control contained in a specified dialog has the focus.

This function is used from within a message handler when a cosEN.LOSTFOCUS message is received to determine if the focus left the application (in which case we don’t validate) or just went to another control.

On Entry:

On Exit:
<cosState>
TRUE if a control in the dialog still has the focus

FALSE if the focus has altogether left the dialog

COS.SetWindowPos - Moves a dialog to a window quadrant or the center of a

window.

On Entry:
<cosCWnd$>
The parent window (NullWord$ for screen)

that is used to position the dialog.

 <cosState>

The quadrant to locate the window as follows:

0 is centered

1 is upper left

2 is upper right

3 is lower right

4 is lower left

NOTE: This function has a windows counterpart, but due to an error, the functionality is different. For the functionality of the windows SetWindowPos function use COS.SetWIndowPosEx instead.

General Dialog Functions

These functions, most of which take a control id as an argument, assume the dialog handle is contained in the MTB variable cosDlghDlg$.

COS.DlgMessageBox
Displays a message box with a dialog parent

On Entry:
<cosState>

Specifies the contents and behavior of the

dialog box. SEE COS.MessageBox

< cosCtlText$>
contains the message box text

<cosSysData$>
contains the message box caption

On Exit:
<cosFuncResult>
contains the ID of the control that caused the

dialog to close. SEE COS.MessageBox

COS.GetDlgItemTextLength Returns the length of a dialog (or window) control’s text

On Entry:
<cosCtlId>

contains the control ID

On Exit:
<cosFuncResult>
contains the length of he text

COS.GetDlgItemText - Retrieves text contained in the specified dialog (or window) specified control

On Entry:
<cosCtlId>

contains the control ID

On Exit:
<cosCtlText$>
contains the control text

COS.SetDlgItemText - Sets the text in a specified dialog (or window) control

On Entry:
<cosCtlId>

contains the control ID

<cosCtlText$>
contains the text to be copied

On Exit:

COS.SetDlgItemFocus - Sets the input focus to the specified dialog (or window) control

On Entry:
<cosCtlId>

contains the control ID

On Exit:
<cosCWnd$>
contains a handle to the window that previously

had the focus or NullWord$ if the function failed

COS.EnableDlgItem - Enables/disables a dialog (or window) control

This function enables or disables mouse and keyboard input to the given window or control. When input is disabled, the window ignores input such as mouse clicks and key presses. When input is enabled, the window processes all input.

On Entry:
<cosCtlId>
contains the control ID

<cosState>

contains the desired state as follows:

cosEW.ENABLE (1) - Enables control

cosEW.DISABLE (0) - Disables control

On Exit:
<cosFuncResult>
nonzero if the window was previously disabled.

Otherwise, the return value is zero

COS.GetDlgItem - Retrieves the handle of a dialog (or window) control

On Entry:
<cosCtlId>

contains the control ID

On Exit:
<cosCWnd$>
contains a handle to the window or NullWord$

if the function failed

COS.ShowDlgItem - Specifies how a dialog control is to be shown

On Entry:
<cosCtlId>

contains the control ID

<cosCtlId> contains the control ID

<cosState> contains the desired state as follows:

SW.HIDE

SW.SHNORMAL

SW.NORMAL

SW.SHMINIMIZE

SW.SHMAXIMIZE

SW.MAXIMIZE

SW.SHNOACTIVATE

SW.SHOW

SW.MINIMIZE

SW.SHMINNOACTIVATE

SW.SHNA

SW.RESTORE

On Exit:
< cosFuncResult >
nonzero if the window was previously visible. It

is zero if the window was previously hidden.

Button Related Dialog Functions

COS.CheckDlgButton - Sets the state of a specified dialog (or window) button control

Selects (place check mark next to) or clears (removes check mark from a button, or it changes the state of a three-state button.

On Entry:
<cosCtlId>

contains the control ID

<cosState>

contains the desired state as follows:

cosCDB.BTNOFF (0) - is not checked

cosCDB.BTNON (1) - is checked

cosCDB.BTNGRAY (2) - is grayed

On Exit:

COS.IsDlgButtonChecked - Gets the state of a specified button control

Determines whether a button control has a check mark next to it, or if three-state if is indeterminate.

On Entry:
<cosCtlId>

contains the control ID

On Exit:
<cosState>

contains the resulting state as follows:

cosCDB.BTNOFF (0) - is not checked

cosCDB.BTNON (1) - is checked

cosCDB.BTNGRAY (2) - if a thee-state button is indeterminate

COS.CheckRadioBtn - Checks one of a group of radio buttons

Selects the indicated radio button (turning of all others) from the specified radio button group

On Entry:
<cosCtlId>

contains the first control ID of the group

<cosCtlIdEx>

contains the last control ID in the group

<cosItemId>

is the control ID to be selected.

On Exit:

COS.GetCheckedRadioBtn - Returns the currently checked radio button

Determine the selected radio button from the specified radio button group

On Entry:
<cosCtlId>

contains the first control ID of the group

<cosCtlIdEx>

contains the last control ID in the group

On Exit:
<cosItemId> is the selected control ID

COS.LoadButtonPic
 - Loads a bitmap pushbutton with custom pictures from a resource file.

Loads bitmap pushbutton with a specified set of pictures (from resource)

On Entry:
<cosCtlId>

contains the control ID

<cosCtlText$>
contains a semicolon separated list of button names representing the 4 button states as follows:

1st when the button is up (required).

2nd when the button is down.

3rd when the button has the input focus.

4th when the input focus is lost

Example: "picture1u;picture1d;picture1f;picture1x"

On Exit:

COS.AutoLoadButtonPic - Loads a bitmap pushbutton with pictures from a resource file.

On Entry:
<cosCtlId>

contains the control ID

NOTE: The names of each of the 4 bitmaps used are based upon the button caption followed by a letter as follows:

 "U" is when the button is up.

 "D" is when the button is down.

 "F" is when the button has the input focus.

 "X" is when the button loses the input focus.

Example: Where the button caption is "PRINT", the associated resource ID's would be:

 "PRINTU"

 "PRINTD"

 "PRINTF"

 "PRINTX"

On Exit:

Edit Control Related Dialog Functions

COS.EditLimitText - Limits the number of characters allowed in an edit control

On Entry:
<cosCtlId>

contains the control ID

<cosItemSize>
contains the maximum characters to allowed

On Exit:

COS.EditSetSel - Sets the positions of an edit control selector

On Entry:
<cosCtlId>

contains the control ID

<cosStart>

contains the start position

<cosEnd>

contains the end position

On Exit:
<cosFuncResult>
nonzero if the message is sent to an edit

control.

COS.EditReplaceSel - Replaces currently selected text with specified text

On Entry:
<cosCtlId>

contains the control ID

<cosCtlText$>
contains the replacement text

On Exit:

Combo Box Related Dialog Functions

COS.ComboShowDropdown - Open/Close dropdown (list box) portion of a combo box control

On Entry:
<cosCtlId>

contains the control ID

<cosState>

TRUE to open, FALSE to close

On Exit:

COS.ComboLimitText - Sets the maximum number of characters allowed in the edit control portion of the combo box

On Entry:
<cosCtlId>

contains the control ID

<cosItemSize>
contains the maximum characters to allowed

On Exit:

COS.ComboAddString - Adds a string to a combo box control

On Entry:
<cosCtlId>

contains the control ID

<cosCtlText$>
contains the string to be added

On Exit:
<cosItemId>

contains resulting item index

COS.ComboAddStringData - Same as above but includes an additional 32 bits of data that is stored separately

On Entry:
<cosCtlId>

contains the control ID

<cosCtlText$>
contains the string to be added

<coswParam>
contains the 32 bits (4 bytes) of data

On Exit:
<cosItemId>

contains resulting item index

COS.ComboSetCurSel - Sets the index of the currently selected item

On Entry:
<cosCtlId>

contains the control ID

<cosItemId>

contains the index of the item to select

On Exit:

COS.ComboGetCurSel - Returns the index of the currently selected item

On Entry:
<cosCtlId>

contains the control ID

On Exit:
<cosItemId>

contains the index of the selected item

COS.ComboSetEditSel - Set the range of selected text In the edit control

On Entry:
<cosCtlId>

contains the control ID

<cosStart>

contains the start position

<cosEnd>

contains the end position

On Exit:
<cosFuncResult>
nonzero if the message is successful. It is

CB.ERR if the message is sent to a combo box with the CBS.DROPDOWNLIST style.

COS.ComboResetContent - Clears the contents of the combo control

On Entry:
<cosCtlId>

contains the control ID

On Exit:
<cosFuncResult>
always CB.OKAY

COS.ComboSetItemData - Adds 32 bits of hidden data to a combo control item

On Entry:
<cosCtlId>

contains the control ID

<coslParam>

contains the 32 bits (4 bytes) value

On Exit:

COS.ComboGetItemData - Retrieves the stored 32 bits of hidden item data

On Entry:
<cosCtlId>

contains the control ID

On Exit:
<cosFuncResult>
contains 32 bit value

List Box Related Dialog Functions

COS.ListAddString - Adds a string to a list box control

On Entry:
<cosCtlId>

contains the control ID

<cosCtlText$>
contains the string to be added

On Exit:
<cosItemId>

contains resulting item index

COS.ListAddStringData - Same as above but includes an additional 32 bits of data that is stored separately

On Entry:
<cosCtlId>

contains the control ID

<cosCtlText$>
contains the string to be added

<coswParam>
contains the 32 bits (4 bytes) of data

On Exit:

COS.ListSetCurSel - Selects the current item in a list box

On Entry:
<cosCtlId>

contains the control ID

<cosItemId>

contains the index of the item to select

On Exit:

COS.ListSetSel - Selects an item in a multiple-select list box

On Entry:
<cosCtlId>

contains the control ID

<cosItemId>

contains the index of the item to select

On Exit:

COS.ListGetCurSel - Returns the index of the currently selected item

On Entry:
<cosCtlId>

contains the control ID

On Exit:
<cosItemId>

contains the index of the selected item

COS.ListSetItemData - Adds 32 bits of hidden data to a list control item

On Entry:
<cosCtlId>

contains the control ID

<coslParam>

contains the 32 bits (4 bytes) value

On Exit:

COS.ListGetItemData - Retrieves the stored 32 bits of hidden item data

On Entry:
<cosCtlId>

contains the control ID

On Exit:
<cosFuncResult>
contains 32 bit value

COS.ListSetTabStops - Set the tab stops for a list box

To respond to the COS.ListSetTabStops function, the list box must have been created with the LBS.USETABSTOPS style.

On Entry:
<cosCtlId>

contains the control ID

<cosCtlText$>
Is an array of 16 bit integers containing the tab stops, in dialog box units. The tab stops must be sorted in increasing order; back tabs are not allowed.

On Exit:

COS.ListGetCount - Returns the number of items in a list box

On Entry:
<cosCtlId>

contains the control ID

On Exit:
<cosItemCount>
contains the number of items

COS.ListGetSelCount - Returns the number of items select in a multi-select list box

On Entry:
<cosCtlId>

contains the control ID

On Exit:
<cosItemCount>
contains the number of selected items

COS.ListGetSelItemsEx - Returns a list of selected items in a multi-select list box

On Entry:
<cosCtlId>

contains the control ID

<cosItemCount>
contains the number of items to get (63 max)

On Exit:
<cosCtlText$>
contains a list of up to 63 4 byte entries

Static Control Related Dialog Functions

COS.LoadPictureControl - Attaches the specified bitmap file to the specified dialog frame control

On Entry:
<cosCtlId>

contains the control ID

<cosFileName$>
contains the bitmap filename

<cosDirName$>
contains the bitmap directory (LOAD.DIBPIC only)

<cosState>

contains the fitting style

cosPIC.CROP crops the image portion outside of the control

cosPIC.STRETCH) stretches picture image to fit control

On Exit:
<cosError>

NOERROR

FILENOTFOUND

COS.LoadPictureControlEx - Same as above but uses a DOS filename

<cosFileSpec$>
contains an ASCIIZ, NULL terminated (“@00@”) DOS filename

On Entry:

Windows Functions Specific to Comet

COS.GetFrameWnd - Returns a handle to the frame window

On Entry:

On Exit:
<cosCWnd$>
contains a handle to the application frame

(contains menu/toolbar) window

COS.GetViewWnd - Returns a handle to the view window

On Entry:

On Exit:
<cosCWnd$>
contains a handle to the application view

(contains QCRT screen) window

COS.GetAppWin - Same as COS.GetViewWnd

COS.SizeViewToWindow - Resizes the view/frame windows to fit a specified window

On Entry:
<cosCWnd$>
contains a handle to the window whose size

will be matched.

On Exit:

COS.SizeViewToDialog - Resizes the view/frame windows to fit a currently active dialog

On Entry:

On Exit:

COS.SetViewSize - Sets the size of the view/frame windows.

On Entry:
<cosWidth>

contains the desired window width

<cosHeight>

contains the desired window height

On Exit:

COS.SetCaption - Sets the caption on the Frame window title bar

On Entry:
<cosCtlText$>
contains the text to be copied

<cosState>

contains one the modifiers

0 - Show specified caption alone

1 - Include standard caption with specified caption

On Exit:

COS.SetStatusMessage - Displays a status message on the bottom status bar.

On Entry:
<cosCtlText$>
contains the text to be copied

On Exit:

COS.MapCoswRect
- Converts a rectangle from COSW units to pixels

On Entry:
A rectangle specified in COSW units by the variables:

<cosLeft>

<cosTop>

<cosRight>

<cosBottom>

On Exit:
The same rectangle specified in screen units (pixels) by the variables:

<cosLeft>

<cosTop>

<cosRight>

<cosBottom>

COS.GetCoswBaseUnits - Returns the factor by which COSW units are measured.

Each horizontal base unit is equal to 4 horizontal COSW units; each vertical base unit is equal to 8 vertical COSW units. Therefore, to convert COSW units to pixels, use the following formulas:

pixelX = (templateunitX * baseunitX) / 4

pixelY = (templateunitY * baseunitY) / 8

Similarly, to convert from pixels to COSW units, use the following formulas:

templateunitX = (pixelX * 4) / baseunitX

templateunitY = (pixelY * 8) / baseunitY

The multiplication is performed before the division to avoid rounding problems if base units are not divisible by 4 or 8.

On Entry:

On Exit:

<cosWidth>
contains the horizontal base unit (X)

<cosHeight>
contains the vertical base unit (Y)

DIRECT Windows Controls

The following five functions are used to create standard Windows control to be placed directly onto the application View window. The parameters are the same for each control and are as described below:

COS.CreateStatic

- Creates a “static” control in a window

COS.CreateEdit

- Creates a “edit” control in a window

COS.CreateListBox

- Creates a “list box” control in a window

COS.CreateComboBox
- Creates a “combo box” control in a window

COS.CreateButton

- Creates a “button” control in a window

On Entry:
<cosStyle>

contains the style of the control

<cosExStyle>
contains the extended style of the control

<cosRow>
top position of the control rectangle

<cosCol>
left position of the control rectangle

<cosWidth>

width of the control rectangle

<cosHeight>

height of the control rectangle

<cosCtlId>

contains the control ID of the control

<cosCWnd$>
contains a handle to the parent window

(cosCTL.PARENTSPECIFIED must be set)

<cosDlgFlags>
contains additional modifiers:

cosCTL.RCQCRT - Row/Col are QCRT Rows\Col

cosCTL.WHQCRT - Width/Height are QCRT /Rows/Col

cosCTL.RCCOSWUNITS - Row/Col are COSW units

cosCTL.WHCOSWUNITST - Width/Height are COSW units

cosCTL.COSCOLOR - Color maps to COMET color

cosCTL.RGBCOLOR - Color is COLORREF color

cosCTL.PICTURECTRL - Displays a picture

cosCTL.RCDLGWUNITS - Row/Col are dialog units

cosCTL.WHDLGWUNITST - Width/Height are dialog units

cosCTL.USESEXTSTYLE - Control uses extended style

cosCTL.RCNOMARGINS - Ignore margins

cosCTL.PARENTSPECIFIED - Font is parent window

On Exit:
<cosCWnd$>
contains a handle to the new control window

COS.DestroyControl - Destroys the specified Window control

On Entry:
< cosCtlId>
contains the control ID

On Exit:

COS.DestroyAllControls - Destroys all Window controls

On Entry:

On Exit:

Generic Windows Functions

COS.SetWindowText - Sets the text contained in a specified window

On Entry:
<cosCWnd$>
contains a handle to the subject window

<cosCtlText$>
contains the text to be copied

On Exit:

COS.GetWindowText - Gets the text contained in a specified window

On Entry:
<cosCWnd$>
contains a handle to the subject window

On Exit:
<cosCtlText$>
contains the window text

COS.GetWindowTextLength - Returns length of text in a specified window

On Entry:
<cosCWnd$>
contains a handle to the subject window

On Exit:
<cosFuncResult>
contains the length of the window text

COS.GetTextExtent - Returns the width & height of specified text

On Entry:
<cosCWnd$>
contains a handle to the subject window

<cosCtlText$ >
contains the text to be measured

On Exit:
<cosWidth>

contains the width of the text

<cosHeight>

contains the height of the text

COS.SendMessage - Sends a message to a specified window

On Entry:
<cosCWnd$>
contains a handle to the target window

<cosMessage>
contains the message (WM_?? Or…)

<coswParam>
contains a 32 bit wParam value

<coslParam>

contains a 32 bit lParam value

On Exit:

COS.PostMessage - Posts a message to a specified window

In Comet, this function is essentially the same as COS.SendMessage

COS.ShowWindow - Specifies how a window is to be shown

On Entry:
<cosCWnd$>
contains a handle to the subject window

<cosState> contains the desired state as follows:

SW.HIDE

SW.SHNORMAL

SW.NORMAL

SW.SHMINIMIZE

SW.SHMAXIMIZE

SW.MAXIMIZE

SW.SHNOACTIVATE

SW.SHOW

SW.MINIMIZE

SW.SHMINNOACTIVATE

SW.SHNA

SW.RESTORE

On Exit:
< cosFuncResult >
nonzero if the window was previously visible. It

is zero if the window was previously hidden.

COS.EnableWindow - Enables/disables a window

This function enables or disables mouse and keyboard input to the given window or control. When input is disabled, the window ignores input such as mouse clicks and key presses. When input is enabled, the window processes all input.

On Entry:
<cosCWnd$>
contains a handle to the subject window

<cosState>

contains the desired state as follows:

cosEW.ENABLE (1) - Enables control

cosEW.DISABLE (0) - Disables control

On Exit:
<cosFuncResult>
nonzero if the window was previously disabled.

Otherwise, the return value is zero

COS.IsWindowEnabled - Determines if a window is enabled/disabled

On Entry:
<cosCWnd$>
contains a handle to the subject window

On Exit:
<cosState>

contains the window state as follows:

cosEW.ENABLE (1) - Enabled

cosEW.DISABLE (0) - Disabled

COS.SetFocus - Moves the input focus to the specified window

On Entry:
<cosCWnd$>
contains a handle to the subject window

On Exit:
<cosCWnd$>
contains a handle to the window that previously

had the focus or NullWord$ if the function failed

COS.GetFocus - Gets the handle of the window with the focus

On Entry:

On Exit:
<cosCWnd$>
contains a handle to the window that has the

Input focus

COS.GetParent - Gets the handle of a window’s parent

On Entry:
<cosCWnd$>
contains a handle to the subject child window

On Exit:
<cosCWnd$>
contains a handle to the parent of the specified

child window

COS.InvalidateRect - Invalidates a specified rectangle of a window

On Entry:
<cosCWnd$>
contains a handle to the subject window

A rectangle specified in screen units by the variables:

<cosLeft>

<cosTop>

<cosRight>

<cosBottom>

<cosDlgFlags>
cosIR.ERASEBKG to erase background and/or

cosIR.ENTIREWIN to invalidate the entire window

On Exit:

COS.GetDialogBaseUnits - Returns the factor by which dialog control units are measured.

SEE: COS.GetCoswBaseUnits substituting “dialog template units” for “COSW units”

COS.MapDialogRect - Converts rectangle from dialog units to pixels

On Entry:
A rectangle specified in COSW units by the variables:

<cosLeft>

<cosTop>

<cosRight>

<cosBottom>

On Exit:
The same rectangle specified in screen units (pixels) by the variables:

<cosLeft>

<cosTop>

<cosRight>

<cosBottom>

COS.ClientToScreen - Converts a point from client coordinates to screen coordinates.

On Entry:
A point specified in client coordinates by the variables:

<cosCol>

<cosRow>

On Exit:
The same point specified in screen units (pixels) by the variables:

<cosCol>

<cosRow>

COS.GetWindowRect - Returns the rectangle defining a window in screen coordinates

On Entry:
<cosCWnd$>
contains a handle to the subject window

On Exit:
A rectangle containing the screen coordinates of the window in the variables:

<cosLeft>

<cosTop>

<cosRight>

<cosBottom>

COS.GetClientRect - Returns the rectangle defining a window in client coordinates.

On Entry:
<cosCWnd$>
contains a handle to the subject window

On Exit:
A rectangle containing the client of the window in the variables:

<cosLeft>

<cosTop>

<cosRight>

<cosBottom>

COS.SetWindowPosEx - Moves, sizes and changes z-order of specified the window

On Entry:
<cosCWnd$>
contains a handle to the subject window

A rectangle specified by the variables:

<cosCol>

<cosRow>

<cosWidth>

<cosHeight>

<cosDlgFlags>
contains one of the following:

SWP.DRAWFRAME - Draws a frame (defined in the window's class description) around the window.

SWP.HIDEWINDOW - Hides the window.

SWP.NOACTIVATE - Does not activate the window. If this flag is not set, the window is activated and moved to the top of either the topmost or non-topmost group (depending on the setting of the cosItemId parameter).

SWP.NOMOVE
Retains the current position (ignores the x and y parameters).

SWP.NOSIZE
Retains the current size (ignores the cosWidth and cosHeight parameters).

SWP.NOREDRAW
Does not redraw changes. If this flag is set, no repainting of any kind occurs. This applies to the client area, the non-client area (including the title and scroll bars), and any part of the parent window uncovered as a result of the moved window. When this flag is set, the application must explicitly invalidate or redraw any parts of the window and parent window that must be redrawn.

SWP.NOZORDER
Retains the current ordering (ignores the hwndInsertAfter parameter).

SWP.SHOWWINDOW
Displays the window.

<cosItemId>

contains one of the following:

HWND.BOTTOM - Places the window at the bottom of the Z-order. If cosCWnd$ identifies a topmost window, the window loses its topmost status; the system places the window at the bottom of all other windows.

HWND.TOP - Places the window at the top of the Z-order.

HWND.TOPMOST - Places the window above all non-topmost windows. The window maintains its topmost position even when it is deactivated.

HWND.NOTOPMOST - Repositions the window to the top of all non-topmost windows (that is, behind all topmost windows). This flag has no effect if the window is already a non-topmost window.

On Exit:

COS.MoveWindow - Moves and sizes a window to the specified screen coordinates

On Entry:
<cosCWnd$>
contains a handle to the subject window

A rectangle specified by the variables:

<cosCol>

<cosRow>

<cosWidth>

<cosHeight>

<cosDlgFlags>
1 to repaint window else 0

On Exit:

COS.MessageBox - Displays a message box with a specified parent

On Entry:
< cosCtlText$>
contains the message box text

<cosSysData$>
contains the message box caption

<cosState>

Specifies the contents and behavior of the

message box.

MB.ABORTRETRYIGNORE - The message box contains three push buttons: Abort, Retry, and Ignore.

MB.APPLMODAL - The user must respond to the message box before continuing work in the window identified by the hwndParent parameter. However, the user can move to the windows of other applications and work in those windows. MB.APPLMODAL is the default if neither MB.SYSTEMMODAL nor MB.TASKMODAL is specified.

MB.DEFBUTTON1 - The first button is the default. Note that the first button is always the default unless MB.DEFBUTTON2 or MB.DEFBUTTON3 is specified.

MB.DEFBUTTON21 - The second button is the default.

MB.DEFBUTTON31 - The third button is the default.

MB.ICONASTERISK1 - Same as MB.ICONINFORMATION.

MB.ICONEXCLAMATION1 - An exclamation-point icon appears in the message box.

MB.ICONHAND1 - Same as MB.ICONSTOP.

MB.ICONINFORMATION1 - An icon consisting of a lowercase letter "I" in a circle appears in the message box.

MB.ICONQUESTION1 - A question-mark icon appears in the message box.

MB.ICONSTOP1 - A stop-sign icon appears in the message box.

MB.OK1 - The message box contains one push button: OK.

MB.OKCANCEL1 - The message box contains two push buttons: OK and Cancel.

MB.RETRYCANCEL1 - The message box contains two push buttons: Retry and Cancel.

MB.SYSTEMMODAL1 - All applications are suspended until the user responds to the message box. Unless the application specifies MB.ICONHAND, the message box does not become modal until after it is created; consequently, the parent window and other windows continue to receive messages resulting from its activation. System-modal message boxes are used to notify the user of serious, potentially damaging errors that require immediate attention (for example, running out of memory).

MB.TASKMODAL1 - Same as MB.APPLMODAL except that all the top-level windows belonging to the current task are disabled if the hwndParent parameter is NULL. This flag should be used when the calling application or library does not have a window handle available but still needs to prevent input to other windows in the current application without suspending other applications.

MB.YESNO1 - The message box contains two push buttons: Yes and No.

MB.YESNOCANCEL1 - The message box contains three push buttons: Yes, No, and Cancel.

On Exit:
<cosFuncResult>
contains the ID of the control that caused the

dialog to close.

