259
of

QCRT Mnemonic Enhancements

Quick Reference

Miscellaneous Functions

(AllowMaximize = <State>)

Disables/Enables the maximize controls on the COSW window.

 (PlaySound = <WavFileName>, <Flags>)

Plays the specified .WAV file.

(VerifyFile = <SourceFile>, <DestFile>, Flags)

Verifies that the file <DestFile> is present at the target machine and that it is up to date with the file <SourceFile> on the host machine. If the remote file is out of date, <SourceFile> is automatically transferred to the remote machine replacing <DestFile>.

(GetFuncResult)

Requests the 32 bit (4 byte) result of the last GDI function. This function must

Be followed immediately by an INPUT statement to receive the value into the

MTB program.

Metafile Functions

 (BeginMetafile = <FileName>)

Create and begin using the specified metafile If <FileName> is non-blank the file can be saved to disk and recalled at a later time (see ExecuteMetafile).

(EndMetafile = <Flags>)

End the metafile collection process by saving and/or executing the currently active metafile.

(ExecuteMetafile = <FileName>)

Executes the previously saved metafile <FileName>

(AutoMetafile = State)

Enables/disables the automatic use of un-named metafiles.

Wallpaper Functions

(TransparentColor = <QCRTColor>)

Determines the QCRT field color that will be transparent to the underlying wallpaper.

 (WallpaperBitmap = <FileName)

Creates a wallpaper (background) bitmap by tiling the specified bitmap file to fit the currently active Comet window.

(WallpaperColor = <Red>, <Green>, <Blue>)

Creates a wallpaper (background) bitmap using the specified RGB colors to fit the currently active Comet window.

(WallpaperClear)

Clears the wallpaper bitmap in the currently active Comet window to its original state.

(WallpaperRemove)

Removes the wallpaper bitmap in the currently active Comet window, restoring the window to its normal QCRT operation.

Text & Font Functions

(MapMode = <Mode>)

Sets the current coordinate mapping mode.

(SelectFont);<LogFontData>

Selects the font specified by the <LogFont> structure.

(GetFontInfo = <ItemCode>)

Returns the font information specified by <ItemCode>.

(SetTextColor = <Red>, <Green>, <Blue>)

Sets the current text color as specified by <Red>, <Green>, <Blue>.

(GetTextColor)

Returns the current text color.

(SetBkColor = <Red>, <Green>, <Blue>)

Sets the current background color as specified by <Red>, <Green>, <Blue>.

(GetBkColor)

Returns the current background color.

(SetBkMode = <Mode>)

Sets the background mode specified by <Mode>.

(GetBkMode)

Returns the current background mode.

(SetTextAlign = <Flags>)

Sets the text alignment mode to that specified by <Flags>.

(GetTextAlign)

Returns the current text alignment mode.

(GetTextExtent);<Printable Text>

Measures the size (width and height) of the specified <Printable Text>.

(TextOut = <X>, <Y>); <Printable Text>

Prints the specified <Printable Text> at the location specified by <X> and <Y>.

(DrawText = <Left>, <Top>, <Right>, <Bottom>, <Flags>);<Printable Text>

Prints the specified text <Printable Text> into the rectangle specified by the
coordinates <Left>, <Top>, <Right>, <Bottom> using the format codes specified

in <Flags>.
Graphics and Drawing Functions

(SelectPen = <Style>, <Width>, <Red>, <Green>, <Blue>)

Selects the pen described by <Style>, <Width> and <Red>, <Green>, <Blue>.

(SelectSolidBrush = <Red>, <Green>, <Blue>)

Selects the solid brush described <Red>, <Green>, <Blue>.

(SelectHatchBrush = <Style>, <Red>, <Green>, <Blue>)

Selects the hatched brush described <Style> and <Red>, <Green>, <Blue>.

(MoveTo = <X>, <Y>)

Moves the current location pointer to the location specified by <X> and <Y>.

(LineTo = <X>, <Y>)

Draws a line using the currently selected pen from the current location pointer to the location specified by <X, Y>.

(Ellipse = <Left>, <Top>, <Right>, <Bottom>)

Draws an ellipse bound by the rectangle specified by <Left>, <Top>, <Right>, <Bottom> using the currently selected pen and brush.

(Rectangle = <Left>, <Top>, <Right>, <Bottom>)

Draws a the rectangle specified by <Left>, <Top>, <Right>, <Bottom> using the currently selected pen and brush.

(RoundRect = <Left>, <Top>, <Right>, <Bottom>, <CornerWidth>, <CornerHeight>)

Draws a rectangle with corners rounded using the ellipse specified by <CornerWidth> and <CornerHeight> at the location specified by <Left>, <Top>, <Right>, <Bottom> using the currently selected pen and brush.

(DrawBitmap = <Left>,<Top>,<Right>,<Bottom>,<ScaleX>,<ScaleY>,<Flags>);<FileName>

Draws the bitmap contained in the file (.BMP/.JPG) specified in <FileName> in the rectangle specified by <Left>, <Top>, <Right>, <Bottom> using the format codes contained in <Flags>. Scaling factors can be specified in <ScaleX>, <ScaleY>.

(SetROP2 = <Mode>)

Sets the current foreground mix mode.
(GetROP2)

Returns the current foreground mix mode.
QCRT Mnemonic Enhancements

Directory Aliases Overview

When writing programs that must deal with remote CometAnywhere sessions, it is sometimes necessary to reference files that exist on the remote machine. Typically, you might have files that contain bitmaps or client data that are passed via CATRANS or some other custom program. It is not always possible to know exactly how a remote machine is set up or what directories are to be used for storing/retrieving these files. Directory aliases provide a mechanism that allows the user of the remote machine to control where files are located on his machine. Comet provides this feature by having COSW (CometAnywhere client) examine each filename for a special prefix that indicated the presence of a directory alias. Once the name of the alias has been determined, it is looked up in a table located in the COSW.INI file where a substitute path is retrieved.

The form of an alias in a filename is as follows:

$(AliasName)\filename.ext

Example: $(CATOOLS)\DLGDEMO.DLL

Aliases are only valid at the very beginning of a file name and are NOT case sensitive.

Aliases are maintained from the Directory Aliases dialog off of the COSW “Edit” menu. Here, aliases can be added, removed and modified to suit the system requirements.

The form of an alias entry in COSW.INI is:

[Directories]

AliasName=Path

Example: CATOOLS=C:\COMET\MYTOOLS

Given the above examples, COSW will look up the alias “CATOOLS” in COSW.INI. The contents of the alias entry “C:\COMET\MYTOOLS” is then substituted into the filename to yield the correct path for the target machine “C:\COMET\MYTOOLS\DLGDEMO.DLL”.

The following functions support directory aliases:

Loading Dynamic Link Libraries (DLL’s)

Bitmaps for printing or display on screen

Bitmaps used in static controls and on pushbuttons

Wallpaper functions

Metafiles functions

VerifyFile mnemonic

PlaySound mnemonic

File transfer functions (CATRANS, File Delivery)

Metafiles Overview

Metafiles provide a facility for improving the performance of graphical functions by collecting GDI functions into a memory cache and then passing the block to COSW in a single write. This technique dramatically improves the performance of graphical presentations, especially those that are using a remote CometAnywhere session. In addition, metafiles can be given an optional name so that they can be saved to a disk file on the machine running COSW. These saved metafiles can them be recalled at a later time with a single command eliminating the sometimes lengthy process of sending the metafile to COSW each time the functions are to be performed. By default, un-named metafiles are automatically created when a program issues GDI functions to the QCRT driver. This behavior may be changed with the (AutoMetafile = Mode) command. Named and un-named metafiles are automatically transferred and executed when a non-GDI function is performed or an ExecuteMetafile command is issued.

Metafile Function Reference

(BeginMetafile = <FileName>)

Initiates the collecting of GDI functions into a virtual memory block (Metafile) that is passed to COSW in a single write rather than one function at a time enhancing performance. If <FileName> is non-blank the file can be saved to disk and recalled at a later time (see ExecuteMetafile).

(EndMetafile = <Flags>)

End the metafile collection process by saving and/or executing the currently active MetaFile.

Where flags indicate:
VMF.SAVE

= 0
! Save the file – do not execute

VMF.EXECUTE
= 1
! Execute the metafile

(ExecuteMetafile = <FileName>)

Executes the previously saved metafile <FileName>

(AutoMetafile = State)

Enables/disables the automatic use of un-named metafiles. AutoMetafile is ON by default. When disabled, the existing metafile (if present) will be executed.

Where State is:
AMF.DISABLE
= 0
! Disables automatic metafiles

AMF.ENABLE
= 1
! Enables automatic metafiles

Wallpaper Function Reference

Wallpaper Functions

(TransparentColor = <QCRTColor>)

Determines the QCRT field color that will be transparent to the underlying wallpaper.

Where <QCRTColor> is:
A QCRT field color ranging in value from 0 to 15 (upper 4 bits of a configured color).

or

TP.ALL
= 255

! All colors are transparent

TP.FGND
= 254

! The foreground field color is transparent

TP.BKGND
= 253

! The background field color is transparent

TP.ENTRY
= 252

! The entry field color is transparent

TP.CUR
= 251

! The current field color is transparent

Example: Print (0) (ChangeColor = "@F0@");(CS)
! Clear screen to desired transparent color

 Print (0) (TransparentColor = TP.CUR)
! Enable the transparent color

(WallpaperBitmap = <FileName>)

Creates a wallpaper (background) bitmap by tiling the specified bitmap file to fit the currently active Comet window.

(WallpaperColor = <Red>, <Green>, <Blue>)

Creates a wallpaper (background) bitmap using the specified RGB colors to fit the currently active Comet window.

Colors are represented by 3 (Red, Green, Blue) color intensity values, each

ranging in value from 0 (no color - black) to 255 (max color - white).

<Red>
! Specifies the amount of RED

<Green>
! Specifies the amount of GREEN

<Blue>
! Specifies the amount of BLUE

(WallpaperClear)

Clears the wallpaper bitmap in the currently active Comet window to its original state. That is, it will be re-tiled to eliminate any drawing that had been previously done.

(WallpaperRemove)

Removes the wallpaper bitmap in the currently active Comet window, restoring the window to its normal QCRT operation.

GDI Function Reference

MapMode

 (MapMode = <Mode>)

Sets the current coordinate mapping mode. This function determines how GDI functions are mapped into the QCRT display area. The default uses pixels relative to the view area of the window.

Where <Mode> is:
MM.PIXEL

= 0
! Coords. = pixels

MM.PIXEL.MARG

= 1
! Coords. = pixels + margin offset

MM.COSWUNIT

= 2
! Coords. = COSW units

MM.COSWUNIT.MARG
= 3
! Coords. = COSW units + margin offset

MM.QCRTROWCOL
= 4
! Coords. = QCRT row/cols + margin offset

Note: QCRT coordinates are always relative to the margins

SelectFont

(SelectFont);<LogFontData>

Selects the font specified by the <LogFont> structure.

Typically, a user will call GDI.InitLogFont first to set all font fields to their default

values, and then modify whichever field needs changing.

Because the font structure consists of MTB strings, the INTEL/INTELD functions

must be used to effect any modifications. For an example see the GDI.InitLogFont

function in the USE file #LOGFNT.

Some commonly modified fields are:

lfHeight$
Font size in 10th's of a point (inch/72). The font

mapper looks for the largest font that does not exceed

the requested size; if there is no such font, it looks

for the smallest font available.

lfWidth$
Specifies the average width, in logical units, of

characters in the font. If lfWidth is zero, the aspect

ratio of the device is matched against the digitization

aspect ratio of the available fonts to find the closest

match, determined by the absolute value of the difference.

lfOrientation$ Determines if this font is related in size to the currently selected “view” font.

A value of 1 indicates the size of the current view font is used to determine the height of the new font. Any specified lfHeight$ is added to the font height. If the value is 3 the specified lfHeight$ is subtracted from the font height.

lfEscapement$ Specifies the angle, in tenths of degrees, of each line

of text written in the font (relative to the bottom of the page).

lfWeight$
Darkness (or lightness) of the characters

lfItalic$
Specifies an italic font if set to TRUE.

lfUnderline$
Specifies an underlined font if set to TRUE.

lfStrikeOut$
Specifies a strikeout font if set to TRUE.

lfFaceName$
 Desired font face ("Arial", "Courier New", etc.)

 GetFontInfo

(GetFontInfo = <ItemCode>)

Returns the font information specified by <ItemCode>.

Where <PtrItem> is:

PTR.FONT.HEIGHT = 0

!Specifies the height (ascent + descent) of characters

PTR.FONT.EXTLEADING = 1

!Specifies the amount of extra leading (space) that

the application adds between rows. Since this area

is outside the font, it contains no marks and is

not altered by text output calls in either OPAQUE

or TRANSPARENT mode. May be 0.

PTR.FONT.AVECHARWIDTH = 2
!Specifies the average width of characters in the

font (generally defined as the width of the letter x). This value

does not include the overhang required for bold or italic characters.

PTR.FONT.MAXCHARWIDTH = 3
!Specifies the width of the widest character in

the font.

PTR.FONT.WEIGHT = 4

!Specifies the weight of the font.

SetTextColor & SetBkColor

(SetTextColor = <Red>, <Green>, <Blue>)

Sets the current text color as specified by <Red>, <Green>, <Blue>.

(SetBkColor = <Red>, <Green>, <Blue>)

Sets the current background color as specified by <Red>, <Green>, <Blue>.

Colors are represented by 3 (Red, Green, Blue) color intensity values, each

ranging in value from 0 (no color - black) to 255 (max color - white).

<Red>
! Specifies the amount of RED

<Green>
! Specifies the amount of GREEN

<Blue>
! Specifies the amount of BLUE

GetTextColor & GetBkColor

 (GetTextColor)

Returns the current text color.

(GetBkColor)

Returns the current background color.

The return value for this function is obtained by requesting the result of the previous

operation with (GetFuncResult) and then performing an input of the 4 byte return value

(see GetFuncResult).

SetBkMode

(SetBkMode = <Mode>)

Sets the background mode specified by <Mode>.

Sets the background mode. The background mode defines whether the system

removes existing background colors on the drawing surface before drawing

text, hatched brushes, or any pen style that is not a solid line.

Where <Mode> is:

 BKM.TRANSPARENT
= 1
! Background is not changed before drawing.

BKM.OPAQUE

= 2
! Background is filled with the current background color

before the text, hatched brush, or pen is drawn. This is

the default background mode.

GetBkMode

(GetBkMode)

Returns the current background mode.

The return value for this function is obtained by requesting the result of the previous

operation with (GetFuncResult) and then performing an input of the 4 byte return value

(see GetFuncResult).

SetTextAlign & GetTextAlign

(SetTextAlign = <Flags>)

Sets the text alignment mode to that specified by <Flags >.

The TextOut function uses these flags when positioning a string of text on a display or device. The flags specify the relationship between a specific point and a rectangle that bounds the text. The coordinates of this point are passed as parameters to the TextOut member function. The rectangle that bounds the text is formed by the adjacent character cells in the text string.

The flags specify the relationship between a point and a rectangle that bounds the text. The point may be either the current position or the coordinates specified by a text-output function. The rectangle that bounds the text is defined by the adjacent character cells in the text string. The <Flags> parameter can be one or more flags from the following three categories. Choose only one flag from each category.

The first category affects text alignment in the x-direction:

TA.CENTER

= 6
! Aligns the point with the horizontal center of the bounding rectangle.

TA.LEFT
= 0
! Aligns the point with the left side of the bounding rectangle.

This is the default setting.

TA.RIGHT

= 2
! Aligns the point with the right side of the bounding rectangle.

The second category affects text alignment in the y-direction:

TA.BASELINE
= 24
! Aligns the point with the base line of the chosen font.

TA.BOTTOM

= 8
! Aligns the point with the bottom of the bounding rectangle.

TA.TOP

= 0
! Aligns the point with the top of the bounding rectangle.

(default).

The third category determines whether the current position is updated when text is written:

TA.NOUPDATECP = 0
! Does not update the current position after each call to a text-output function. This is the default setting.

TA_UPDATECP
= 1
! Updates the current x-position after each call to a text-output function. The new position is at the right side of the bounding rectangle for the text. When this flag is set, the coordinates specified in calls to the TextOut member function are ignored.

GetTextAlign, GetTextExtent & TextOut

 (GetTextAlign)

Returns the current text alignment Flags. The resulting flags are

 returned in <LoWord>.

(GetTextExtent);<Printable Text>

Measures the size (width and height) of the specified <Printable Text>.

The resulting width and height are returned in <LoWord> and <HiWord> (respecively).

The return value for this function is obtained by requesting the result of the previous

operation with (GetFuncResult) and then performing an input of the 4 byte return value

(see GetFuncResult).

(TextOut = <X>, <Y>); <Printable Text>

Prints the specified <Printable Text> at the location specified by <X> and <Y>.

Character origins are at the upper-left corner of the character cell. By

default, the current position is not used or updated by the function.

If an application needs to update the current position when it calls TextOut,

the application can call the SetTextAlign member function with Flags set to

TA.UPDATECP. When this flag is set, Windows ignores the x and y parameters on

subsequent calls to TextOut, using the current position instead.

DrawText

(DrawText = <Left>, <Top>, <Right>, <Bottom>, <Flags>);<Printable Text>

Prints the specified text <Printable Text> into the rectangle specified by the
coordinates <Left>, <Top>, <Right>, <Bottom> using the format codes specified

in <Flags>.
Call this member function to format text in the given rectangle. It formats text by expanding tabs into appropriate spaces, aligning text to the left, right, or center of the given rectangle, and breaking text into lines that fit within the given rectangle, and breaking text into lines that fit within

the given rectangle. The type of formatting is specified by <Flags>.

The formatting codes can be combined and are specified in <Flags>.

DT.TOP

= 0
! Specifies top-justified text (single line only).

DT.LEFT

= 0
! Aligns text flush-left.

DT.CENTER

= 1
! Centers text horizontally.

DT.RIGHT

= 2
! Aligns text flush-right.

DT.VCENTER
= 4
! Specifies vertically centered text (single line only).

DT.BOTTOM

= 8
! Specifies bottom-justified text. This value must be

combined with DT.SINGLELINE.

DT.WORDBREAK
= 16
! Specifies word-breaking. Lines are automatically

broken between words if a word would extend past the

edge of the rectangle specified by <Left>, <Top>,

<Right>, <Bottom>. A carriage return-linefeed sequence

will also break the line.

DT.SINGLELINE
= 32
! Specifies single line only. Carriage returns and

linefeeds do not break the line.

DT.EXPANDTABS
= 64
! Expands tab characters. The default number of

characters per tab is eight.

DT.TABSTOP
= 128
! Sets tab stops. The high-order byte of <PtrFlags> is

the number of characters for each tab. The default

number of characters per tab is eight.

DT.NOCLIP
= 256
! Draws without clipping. DrawText is somewhat faster

when DT.NOCLIP is used.

DT.EXTERNALLEADING
= 512
! Includes the font's external leading in the line

height. Normally, external leading is not included

in the height of a line of text.

DT.CALCRECT
= 1024
! Returns the height of the formatted text, but does

not draw the text.

DT.NOPREFIX
= 2048
! Turns off processing of prefix characters. Normally,

DrawText interprets the ampersand (&) mnemonic-prefix

character as a directive to underscore the character

that follows, and the two-ampersand (&&) mnemonic-

prefix characters as a directive to print a single

ampersand. By specifying DT.NOPREFIX, this processing

is turned off.

DT.INTERNAL
= 4096
! Uses the system font to calculate text metrics.

DT.EDITCONTROL = 8192
! Duplicates the text-displaying characteristics of a

Multi-line edit control. Specifically, the average

character width is calculated in the same manner as

for an edit control, and the function does not

display a partially visible last line.

DT.PATH.ELLIPSIS
 = 16384
! See DT.END.ELLIPSIS Below

DT.END.ELLIPSIS
= 32768
! Replaces part of the given string with ellipses, if necessary, so that the result fits in the specified rectangle. The given

string is not modified unless the DT.MODIFYSTRING flag

is specified.

You can specify DT.END.ELLIPSIS to replace characters

at the end of the string, or DT.PATH.ELLIPSIS to replace

characters in the middle of the string. If the string contains

backslash (\) characters, DT.PATH.ELLIPSIS preserves as

much as possible of the text after the last backslash.

DT.MODIFYSTRING = 65536
! Modifies the given string to match the displayed text.

This flag has no effect unless the DT_END_ELLIPSIS or

DT_PATH_ELLIPSIS flag is specified.

DT.RTLREADING
= 131072
! Layout in right to left reading order for bi-directional text when the font selected into the hdc is a Hebrew or Arabic font.

The default reading order for all text is left to right.

DT.WORD.ELLIPSIS = 262144
! Truncates text that does not fit in the rectangle and adds ellipses.

NOTE: The values DT.CALCRECT, DT.EXTERNALLEADING, DT.INTERNAL, DT.NOCLIP, and

DT.NOPREFIX cannot be used with the DT.TABSTOP value.

SelectPen

(SelectPen = <Style>, <Width>, <Red>, <Green>, <Blue>)

Selects the pen described by <Style>, <Width> and <Red>, <Green>, <Blue>.

Available pen styles <Style> are:

PS.SOLID

= 0
! Creates a solid pen.

PS.DASH
= 1
! Creates a dashed pen. Valid only when the pen width is 1 or

less, in device units.

PS.DOT
= 2
! Creates a dotted pen. Valid only when the pen width is 1 or

less, in device units.

PS.DASHDOT
= 3
! Creates a pen with alternating dashes and dots. Valid only

when the pen width is 1 or less, in device units.

PS.DASHDOTDOT
= 4
! Creates a pen with alternating dashes and double dots. Valid

only when the pen width is 1 or less, in device units.

PS.NULL

= 5
! Creates a null pen.

PS.INSIDEFRAME
= 6
! Creates a pen that draws a line inside the frame of closed

shapes produced by the Windows GDI output functions that

specify a bounding rectangle (for example, the Ellipse,

Rectangle, RoundRect, Pie, and Chord member functions).

When this style is used with Windows GDI output functions

that do not specify a bounding rectangle (for example, the

LineTo member function), the drawing area of the pen is not

limited by a frame.

If the width of the pen <PtrWidth> is 0, the width in device units is always

1 pixel, regardless of the mapping mode.

NOTE: See SetTextColor for color parameter information.

SelectSolidBrush & SelectHatchBrush

 (SelectSolidBrush = <Red>, <Green>, <Blue>)

Selects the solid brush described <Red>, <Green>, <Blue>.

NOTE: See SetTextColor for color parameter information.

(SelectHatchBrush = <Style>, <Red>, <Green>, <Blue>)

Selects the hatched brush described <Style> and <Red>, <Green>, <Blue>.

Where <Style> can be one of the following values:

HS.HORIZONTAL
= 0
!Horizontal hatch

HS.VERTICAL
= 1
!Vertical hatch

HS.FDIAGONAL
= 2
!Upward hatch (left to right) at 45 degrees

HS.BDIAGONAL
= 3
!Downward hatch (left to right) at 45 degrees

HS.CROSS

= 4
!Horizontal and vertical crosshatch

HS.DIAGCROSS
= 5
!Crosshatch at 45 degrees

NOTE: See SetTextColor for color parameter information.

MoveTo & LineTo

(MoveTo = <X>, <Y>)

Moves the current location pointer to the location specified by <X>, <Y>.

Returns: The X and Y coordinates of the previous position in <LoResult> and

<HiResult> (respectivly).

(LineTo = <X>, <Y>)

Draws a line using the currently selected pen from the current location pointer up to

but not including the location specified by <X>, <Y>. The current position is set

to <X>, <Y>.

SetROP2

 (SetROP2 = <Mode>)

Sets the current foreground mix mode. GDI uses the foreground mix mode to combine pens and interiors of filled objects with the colors already on the screen. The foreground mix mode defines how colors from the brush or pen and the colors in the existing image are to be combined.

Where <Mode> can be any of the following values:

	Mix mode
	Description

	R2.BLACK = 1
	Pixel is always 0.

	R2.COPYPEN = 13
	Pixel is the pen color.

	R2.MASKNOTPEN = 3
	Pixel is a combination of the colors common to both the screen and the inverse of the pen.

	R2.MASKPEN = 9
	Pixel is a combination of the colors common to both the pen and the screen.

	R2.MASKPENNOT = 5
	Pixel is a combination of the colors common to both the pen and the inverse of the screen.

	R2.MERGENOTPEN = 12
	Pixel is a combination of the screen color and the inverse of the pen color.

	R2.MERGEPEN = 15
	Pixel is a combination of the pen color and the screen color.

	R2.MERGEPENNOT = 14
	Pixel is a combination of the pen color and the inverse of the screen color.

	R2.NOP = 11
	Pixel remains unchanged.

	R2.NOT = 6
	Pixel is the inverse of the screen color.

	R2.NOTCOPYPEN = 4
	Pixel is the inverse of the pen color.

	R2.NOTMASKPEN = 8
	Pixel is the inverse of the R2_MASKPEN color.

	R2.NOTMERGEPEN = 2
	Pixel is the inverse of the R2_MERGEPEN color.

	R2.NOTXORPEN = 10
	Pixel is the inverse of the R2_XORPEN color.

	R2.WHITE = 16
	Pixel is always 1.

	R2.XORPEN = 7
	Pixel is a combination of the colors in the pen and in the screen, but not in both.

(GetROP2)

Retrieves the foreground mix mode of the specified device context. The mix mode specifies how the pen or interior color and the color already on the screen are combined to yield a new color. The resulting mode is returned in <LoWord>.

Ellipse, Rectangle & RoundRect

(Ellipse = <Left>, <Top>, <Right>, <Bottom>)

Draws an ellipse. The center of the ellipse is the center of the bounding

rectangle specified by <Left>, <Top>, <Right>, <Bottom>. The ellipse is

drawn with the current pen, and its interior is filled with the current brush.

The figure drawn by this function extends up to, but does not include, the

right and bottom coordinates. This means that the height of the figure is

<Bottom> - <Top> and the width of the figure is <Right> - <Left>.

If either the width or the height of the bounding rectangle is 0, no ellipse

is drawn.

 (Rectangle = <Left>, <Top>, <Right>, <Bottom>)

Draws a the rectangle specified by <Left>, <Top>, <Right>, <Bottom> using the currently selected pen. The interior of the rectangle is filled using the current brush.

Draws a rectangle specified by <Left>, <Top>, <Right>, <Bottom> using the

current pen. The interior of the rectangle is filled using the current brush.

The rectangle extends up to, but does not include, the right and bottom

coordinates. This means that the height of the rectangle is<Bottom> - <Top>

and the width of the rectangle is <Right> - <Left>. Both the width and the height of

a rectangle must be greater than 2 units and less than 32,767 units.

(RoundRect = <Left>, <Top>, <Right>, <Bottom>, <CornerWidth>, <CornerHeight>)

Draws a rectangle with corners rounded using the ellipse specified by <CornerWidth> and <CornerHeight> at the location specified by <Left>, <Top>, <Right>, <Bottom> using the currently selected pen. The interior of the rectangle is filled using the current brush.

See Rectangle.

DrawBitmap

(DrawBitmap = <Left>,<Top>,<Right>,<Bottom>,<ScaleX>,<ScaleY>,<Flags>);<FileName>

Draws the bitmap contained in the file (.BMP/.JPG) specified in <FileName> in the rectangle specified by <Left>, <Top>, <Right>, <Bottom> using the format codes

contained in <Flags>. Scaling factors can be specified in <ScaleX>, <ScaleY>.

Valid format code are:

BMR.FIT.TO.RECT

= 1
! Stretch (or shrink) bitmap to fit rectangle.

Cannot be used with any other codes

or

BMR.CENTER.HZ.RECT
= 2
! Center the bitmap horizontally in rectangle

BMR.CENTER.VT.RECT
= 4
! Center the bitmap vertically in rectangle

BMR.SCALE

= 8
! Multiply dimensions by scaling factors below

When scaling, values contained in <ScaleX> and <ScaleY> are

converted to floating point, divided by 100, and then multiplied

by their respective axis to providing scaling by as little as 1 percent.

Scaling example:

To double only the horizontal size of a bitmap:

<ScaleX> = 200
! * 2

<ScaleY> = 100
! * 1

To halve a bitmap

<ScaleX> = 50
! * .5

<ScaleY> = 50
! * .5

Miscellaneous Function Reference

AllowMaximize

 (AllowMaximize = <State>)

Disables/Enables the maximize controls on the COSW window. Use this command to prevent the user from maximizing the COSW window.

Where State is:
MAX.DISABLE = 0
! Disable the maximize controls

MAX.ENABLE = 1
! Enables the maximize controls

PlaySound

 (PlaySound = <WavFileName>, <Flags>

Plays the specified .WAV file.

Where Flags is:
SND.SYNC

= 0

! play synchronously (default)

SND.ASYNC

= 1

! play asynchronously

SND.NODEFAULT
= 2

! silence (!default) if sound not found

SND.LOOP

= 8

! loop the sound until next sndPlaySound

SND.NOSTOP
= 16

! don't stop any currently playing sound

SND.NOWAIT
= 8192
! don't wait if the driver is busy

SND.FILENAME
= 131072
! name is file name

SND.PURGE

= 64

! purge non-static events for task

Example:

Length 10.0 & Local SoundFlags

SoundFlags = SND.ASYNC+SND.FILENAME+SND.NODEFAULT

Print (0) (PlaySound = "c:\comet\dlg\tada.wav", SoundFlags)

VerifyFile

 (VerifyFile = <SourceFile>, <DestFile>, Flags)

Verifies that the file <DestFile> is present at the target machine and that it is up to date with the file <SourceFile> on the host machine. If the remote file is out of date, <SourceFile> is automatically transferred to the remote machine replacing <DestFile>. A 32 bit value is returned via (GetFuncResult). The lower 16 bits is the error code from the host machine and the upper 16 bits is the error code from the remote machine. If both are 0 then the function completed successfully.

Where Flags is:
VF.MODIFY

= 1
! Check modify date

VF.SIZE

= 2
! Check filesize

VF.SAMEFILE
= 4
! Modify time and size must match

VF.FORCESEND
= 8
! Always send file

VF.CREATEALIAS
= 16
! Create alias if required

VF.CHECKONLY
= 32
! Don't send file

VF.SHOWSTATUS
= 64
! Show progress bar

GetFuncResult

(GetFuncResult)

Requests the 32 bit (4 byte) result of the last GDI function. This function must

Be followed immediately by an INPUT statement to receive the value into the

MTB program.

Example:

! Variables for GetFuncResult

Length 2 & Local Word$

! Temporary 2 byte word holder

Length 4 & Local Result$

! 4 byte string result

Length 5.0 & Local LoResult, HiResult

! Lower/upper 16 bit value

Length 10.0 & Local BigResult

! 32 bit value

! Variables for GetBkMode

Length 5.0 & Local PrevBkMode

! Program segment

.

.

Gosub GetBkMode

.

.

GetBkModeSize:

 Print (GetBkMode)

 Gosub GetFuncResult

! Get lresults

 PrevBkMode = LoResult

! Store resulting mode

Return

GetFuncResult:

 Print (LUN) (GetFuncResult)

! Request result

 Input (LUN) Result$

! Input result

 Word$
= SUB(Result$,2,1)+ Result$

! Get and reverse 1st 2 bytes

 LoResult
= HEXDEC(Word$)

! Convert to MTB numeric

 Word$
= SUB(Result$,4,1)+SUB(Result$,3,1)
! Get and reverse 2nd 2 bytes

 HiResult
= HEXDEC(Word$)

! Convert to MTB numeric

 BigResult
= HiResult*65536+LoResult

! Combined 32 bit numeric value

Return

