MTB Windows Driver Library (WDL)

The WDL consists of 3 MTB source files:

#COSWIND	(Declarative)

#WINDOWS	(Declarative)

#COSWIN	(Executable)

These files are supplied in the “WDL” directory.

All constants used by the WDL can be found in the file “#COSWIND” and “#WINDOWS”. “#COSWIND” must be “used” in the DECLARATIVE section of any application that will be using the WDL. The constants contained in “#WINDOWS” have been transcribed from the C++ include file “windows.h”. Descriptions for these constants can be found in the help files included with the Visual C++ development studio.

All WDL functions are contained in the MTB source file “#COSWIN” which must be “used” in the executable section of any application that requires the use of the WDL. This module actually serves two purposes: The first is to translate and package MTB data into a form that is more compatible with the COSW API, sending the data to the appropriate support function in COSW. The second is to provide a simple mechanism for invoking high level features like Modal and Modeless dialogs, Menus, and Window Controls without the user having to juggle the myriad of messages flying around the Windows environment.

As of this writing, the WDL supports only a subset of the Windows API. Additional capabilities will be added on a as-needed basis.

DECLARATIVE SECTION (#COSWIND)

Feature Control:

As a means of controlling the inclusion of un-referenced code in user programs, the following constants can be used to enable or disable pre-defined sections of code. The section granularity is somewhat arbitrary and may require adjustment. If program size becomes a problem then it may become necessary to modify the driver code or to create a separate library of functions specific to an application. A word of CAUTION: As new compiler and system features become available, further changes will be made to the driver library rendering custom libraries incompatible.

CF.PICFRAME.CODE			Enables .BMP Picture Control functions

CF.PICBUTTON.CODE			Enables Picture Pushbutton Control functions

CF.LISTBOX.CODE			Enables ListBox Control functions

CF.COMBOBOX.CODE			Enables ComboBox Control functions

CF.MENU.CODE			Enables Menu functions

CF.MODELESS.CODE			Enables Modeless Dialog functions

CF.MODAL.CODE			Enables Modal Dialog functions

Callback Control:

To simplify the use of dialogs, we have predefined a set of functions that can be included in the users code that will be called as needed by the driver library. These functions are enabled by the user on a as-needed basis.

CF.USR.IDLE				Enables USR.Idle callback

CF.USR.COMMANDHANDLER		Enables USR.CommandHandler callback

CF.USR.COMMANDFILTERINIT	Enables USR.CommandFilterInit callback

CF.USR.MESSAGEHANDLER		Enables USR.MessageHandler callback

CF.USR.MESSAGEFILTERINIT		Enables USR.MessageFilterInit callback

CF.USR.ERRORHANDLER		Enables USR.ErrorHandler callback

CF.USR.DIALOGINIT			Enables USR.DialogInit callback

Function Attributes:

In general, most constants used by the driver library have been taken from the Windows Software Development Kit (SDK) and have been predefined in the MTB use file “#WINDOWS”. Descriptions for these constants can be found in the help files provided with the SDK. Some additional constants were added to suit our (MTB) own requirements and are as follows:

cosState constants for calls to COS.IsDlgButtonChecked and COS.CheckDlgBtn:

cosCDB.BTNOFF			Button is off

cosCDB.BTNON			Button is on

cosCDB.BTNGRAY			Button is disabled

cosState constants for calls to COS.LoadPictureControl:

cosPIC.CROP				Leave picture as is (will crop to control)

cosPIC.STRETCH			Stretch (or shrink) picture to fit control

cosDlgFlags constants for: COS.CreateStatic, COS.CreateEdit, COS.CreateListBox,

COS.CreateComboBox, COS.CreateButton, and COS.CreateControl:

cosCTL.RCQCRT			Row/Col are QCRT Rows\Col

cosCTL.WHQCRT			Width/Height are QCRT /Rows/Col

cosCTL.RCCOSWUNITS		Row/Col are local font units

cosCTL.WHCOSWUNITST		Width/Height are local font units

cosCTL.COSCOLOR			Color maps to COMET color

cosCTL.RGBCOLOR			Color is COLORREF color

cosEN.LOSTFOCUS			Focus left edit ctl - ok to display error

cosBN.CANCELPEND			Cancel clicked (don’t validate EN.KILLFOCUS or

cos.EN.LOSTFOCUS)

cosState constants for calls to COS.EnableWindow, COS.IsWindowEnabled, and

COS.EnableDlgItem:

cosEW.ENABLE			Is or will be enabled

cosEW.DISABLE			Is or will be disabled

Miscellaneous:

cosError constants:

NOERROR				Dialog was successfully loaded

NODIALOG				Could not load dialog

BADINITDIALOG			Initialization error (wrong message received)

FILENOTFOUND			Picture control could not find file

Additional common constants:

NullByte$				Used for ASCIIZ string termination (“@00@”)

TRUE					BOOLEAN - One

FALSE					BOOLEAN - Zero

�
EXECUTABLE SECTION (#COSWIN)

User Supplied Functions (CallBacks):

The following callback functions are used by the WDL to inform the application of an event occurrence or to retrieve initialization information from the application. Each function must be enabled by setting the appropriate constant as outlined in the “Callback Control” section of this document.

USR.MessageFilterInit:		Gets WM message filter information

USR.MessageHandler:		Handles WM messages

USR.CommandFilterInit:	Gets WM.COMMAND filter information

USR.CommandHandler:		Handles WM.COMMAND messages

USR.DialogInit:			Called when a dialog has been constructed

USR.Idle:			Called during idle time from Modal dialog or Modal loop

USR.ErrorHandler:		Called when a system error occurs

WDL Functions:

The following functions are supplied by the WDL. Many if not most of the functions contained herein are the MTB equivalent of a similar Windows API. While not all API’s have been provided, we have selected those that are most appropriate for use in a MTB application. Other functions will certainly be added in the future on a as-needed basis.

COS.Init			Initializes WDL

COS.OpenDll			Opens an application specified DLL

COS.CloseDll			Closes the currently open DLL

COS.FlushQueue		Clear all messages pending in the message queue

COS.EnableInterrupts		Allows messages to be received from Windows

COS.DisableInterrupts		Disables Windows messages

COS.ModalLoop		Executes a modal loop

COS.ExitModalLoop		Terminates a modal loop

COS.InitCmdFilter		Initializes a WM.COMMAND filter

COS.InitMsgFilter		Initializes a WM. Message filter

COS.AttachDialog		Attaches WDL to an existing dialog

COS.ExecuteDialog		Begins dialog execution

COS.DestroyDialog		Terminates a modeless dialog

COS.DialogInit			Initializes a resource dialog

COS.CreateModeless		Creates a modeless dialog

COS.DoModal			Executes a modal dialog

COS.DestroyAll			Destroys all dialog opened by this Comet session

COS.EndDialog			Terminates a modal dialog

COS.DialogHasFocus		Determines if dialog control has the focus

COS.FindDialog			Find a dialog with a specified ID

COS.SetWindowPos		Moves a dialog to a window quadrant or center

COS.GetDlgItemText		Retrieves text contained in specified control

COS.SetDlgItemText		Sets the text in a specified control

COS.SetDlgItemFocus		Sets the input focus to the specified control

COS.EnableDlgItem		Enables/disables a dialog control

COS.GetDlgItem		Retrieves the CWnd (handle) of a dialog control

COS.ShowDlgItem		Specifies how a dialog control is to be shown

COS.CheckDlgButton		Sets the state of a specified button control

COS.IsDlgButtonChecked	Gets the state of a specified button control

COS.CheckRadioBtn		Checks one of a group of radiobuttons

COS.GetCheckedRadioBtn	Returns the currently checked radiobutton

COS.EditLimitText		Limits the number of chars. in a edit control

COS.EditSetSel			Sets the positions of an edit control selector

COS.LoadPictureControl	Loads a .BMP file into a picture frame control

COS.LoadButtonPic		Loads a bitmap pushbutton with custom pictures

COS.AutoLoadButtonPic	Loads a bitmap pushbutton with default pictures

COS.ComboAddString		Adds a string to a combobox control

COS.ComboSetCurSel		Sets the index of the currently selected item

COS.ComboGetCurSel		Gets the index of the currently selected item

COS.ListAddString		Adds a string to a listbox control

COS.ListSetCurSel		Sets the index of the currently selected item

COS.ListGetCurSel		Gets the index of the currently selected item

COS.ListSetItemData		Associates a WORD value with a listbox item

COS.GetMenu			Gets a handle to the currently loaded menu

COS.SetMenu			Sets the current menu

COS.LoadMenu			Loads a menu from a resource

COS.GetSubMenu		Gets a handle to a submenu of a menu handle

COS.DestroyMenu		Destroys a menu

COS.TrackPopupMenu		Tracks a menu (popup)

COS.GetAppWin		Gets a handle to the session’s main window

COS.SetWindowText		Sets the text contained in a specified window

COS.GetWindowText		Gets the text contained in a specified window

COS.SendMessage		Sends a message to a specified window

COS.ShowWindow		Specifies how a window is to be shown

COS.EnableWindow		Enables/disables a window

COS.IsWindowEnabled		Determines if a window is enabled/disabled

COS.SetFocus			Moves the input focus to the specified window

COS.GetFocus			Gets the handle of the window with the focus

COS.GetParent			Gets the handle of a window’s parent

COS.CreateStatic		Creates a “static” control in a window

COS.CreateEdit			Creates a “edit” control in a window

COS.CreateListBox		Creates a “listbox” control in a window

COS.CreateComboBox		Creates a “combobox” control in a window

COS.CreateButton		Creates a “button” control in a window

COS.CreateControl		Creates a pre-defined control in a window

COS.DestroyControl		Destroys the specified Window control

COS.DestroyAllControls		Destroys all Window controls

COS.DlgMessageBox		Displays a messagebox with a dialog parent

COS.MessageBox		Displays a messagebox with a specified parent

COS.OnCommand		Waits for and dispatches Windows messages

COS.CommandWait		Waits for a Windows message

COS.OutInit			Initializes outgoing message structure

